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‘We show that healthcare providers face a tradeoff between increasing the number of patients they
treat and improving their quality of care. To measure the magnitude of this quality-quantity tradeoff, we
estimate a model of dialysis provision that explicitly incorporates a centre’s unobservable and endogenous
choice of treatment quality while allowing for unobserved differences in productivity across centres. We
find that a centre that reduces its quality standards such that its expected rate of septic infections increases
by 1 percentage point can increase its patient load by 1.6%, holding productivity, capital, and labour
fixed; this corresponds to an elasticity of quantity with respect to quality of —0.2. Notably, our approach
provides estimates of productivity that control for differences in quality, whereas traditional methods
would misattribute lower-quality care to greater productivity.
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1. INTRODUCTION

Healthcare providers face a tradeoff between increasing the number of patients they treat and
maintaining high standards of care. This tension between the quality and quantity of treatments
lies at the centre of many recent policy initiatives, such as Medicare’s prospective payment system
that ties reimbursements to a fixed amount per service irrespective of a provider’s actual costs.
Although these initiatives aim to limit wasteful healthcare expenses, they may inadvertently
result in less-effective care if providers cut costs by reducing the quality of their treatments.
As such, measuring the tradeoff between the number and quality of treatments is crucial for
understanding the impact of any potential policy change, though doing so in a way that properly
accounts for differences in productivity across providers poses several econometric challenges.
This article examines the quality-quantity tradeoff explicitly and provides an empirical framework
for measuring its magnitude. Applied to the dialysis industry, we find that the cost of improving

1071

Downl oaded from https://academ c. oup. conf restud/ articl e-abstract/84/3/ 1071/ 2417356
by Acq Serials Dept Periodicals user

on 19 January 2018



1072 REVIEW OF ECONOMIC STUDIES

treatment quality is substantial, whereas previous measurement techniques would show only a
small tradeoff.

Centres that provide outpatient dialysis treatment—a process that cleans the blood of patients
with kidney failure—face a particularly acute quality-quantity tradeoff, and several institutional
details make it a natural setting for studying the relationship between productivity and quality
within health care. First, dialysis treatments follow a straightforward process related to stations
and staff, which allows us to closely approximate a facility’s production function. Secondly,
we observe centres’ input levels (i.e. staffing and machines) and production (i.e. patient loads),
which allows us to cleanly identify the transformation of inputs into outputs. Thirdly, facilities
have observable differences in outcomes that relate directly to the quality of care they provide (e.g.
infections and mortality), which allows us to connect a centre’s inputs and outputs to its treatment
quality. Fourthly, payments for treatment are largely uniform due to Medicare’s prospective
payment system and do not depend on treatment quality, making it possible for us to distinguish
quality choices from price discrimination ] Finally, payments to dialysis facilities are substantial,
at over $20 billion in 2011 and 6% of total Medicare spending, which allows us to implement
our model on an important area for policy analysis.

Identifying a quality-quantity tradeoff among dialysis providers requires us first to understand
the incentives centres face for providing high-quality care. Most directly, dialysis centres have an
incentive to minimize treatment costs under Medicare’s prospective payment system, which may
lead them to provide low-quality—and hence less-costly—care. As an example, a centre can treat
more patients if it spends less time cleaning machines after each use, although doing so increases
the risk of patients acquiring infections. Counteracting the incentive to increase patient loads
by reducing treatment quality are several motivations for maintaining high standards. Perhaps
most notably, centres must report quality statistics to Medicare and face intermittent inspections
by state regulators, with [Ramanarayanan and Snyded @2011)) finding that these reports have a
causal impact on the quality of care provided by dialysis centresld In addition, patients have
some choice over their dialysis providers and nephrologists make referrals based, in part, on a
centre’s effectiveness, potentially leading centres to compete for patients by providing higher-
quality care @,M). Finally, non-profit centres may have objectives for providing high-quality
care unrelated to maximizing profits ( ,M). In keeping with these studies, we find that the
frequency of inspections, the number of years since a centre was last inspected, and nephrologists’
referral rates are all correlated with centres’ infection rates. In recognition of this institutional
detail, our model of centres’ quality choices includes such incentive shifters, as they provide an
important source of variation that allows us to identify a centre’s quality-quantity tradeoff.

After establishing centres’ motivations for providing high-quality care, determining whether
dialysis centres do, in fact, face a costly tradeoff between quality and quantity requires us to
overcome two key econometric challenges: the presence of unobserved differences in productivity
across centres and the difficulty of directly measuring centres’ quality choices.

As it relates to the first challenge, unobserved differences in productivity may bias estimates
of the quality-quantity tradeoff: because centres choose their targeted levels of quality, estimating
the relationship between quality and quantity becomes confounded by unobserved differences

1. In2012, Medicare instituted a Quality Incentive Program (QIP) for dialysis centres that reduces reimbursements
by 2% if centres do not adhere to a quality standard for average haemoglobin levels and urea reductions rates, two
measures of the effectiveness of dialysis. Although it is considered a novel attempt to incorporate quality standards into
the Prospective Payment System, the QIP does not account for infection rates—clearly an important measure of treatment
quality — in its measurement system. The QIP was not in effect for the timespan covering the data used in our analysis.

2. Using aregression discontinuity approach, they show that centres rated just below the threshold between “worse
than expected” and *“as expected” on annual CMS reports have improve their performance in the following year relative
to those that narrowly surpass the threshold.
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in productivity, such as staff skill levels, managerial ability, or patient characteristics, which are
observable to the centre but not to the researcher[] As greater productivity effectively shifts out a
centre’s production possibilities frontier, the centre becomes able both to treat more patients and
to provide better care. At the extreme, high levels of unobserved productivity may even generate
a positive correlation between quality and quantity; this correlation would bias reduced-form
estimates of the quality-quantity tradeoff and lead researchers to underestimate facilities’ true
costs of improving their quality standards.

To obtain consistent cost estimates for providing higher-quality care, we build on the structural
methods for estimating firm-level production functions first proposed b 19949),
and later extended by|Levinsohn and Petrin (2003),/Ackerberg et all ), i 1(2014),
and others. Conceptually, we adapt these methods to incorporate a “quality-choice” stage that
comes after a centre’s choices of labour and capital inputs. That is, after acquiring capital and
training workers, a manager observes her centre’s expected level of productivity and dictates
an optimal level of quality by, e.g. stipulating guidelines for the cleanliness of equipment or
the amount of time between shifts. Incorporating these endogenous quality choices into our
estimation technique is a necessary adjustment for healthcare settings such as dialysis because
providers would otherwise appear more productive when they are instead treating many patients
ineffectively.

To address the second main econometric challenge—that we do not directly observe centres’
quality choices—we use observable measures of patient outcomes as proxies for what those
choices must have been. Our approach is based on the assumption that, if high-quality care is
more likely to result in better health outcomes, those outcomes are valid proxies for unobserved
quality choices. Proceeding in this manner, however, presents two additional complications. First,
health outcomes depend not just on the choices made by centres, but also on patients’ underlying
characteristics. To account for this, we use centre-level patient characteristics to control for key
sources of variation in the patient population that could influence health outcomes. Secondly,
health outcomes depend on many factors beyond just the quality of care provided by centres,
including a large random component, which introduces attenuation bias into standard estimation
techniques. In light of this, we employ multiple measures of health outcomes—in our case, derived
from centres’ septic (blood) infection and mortality rates—and use an instrumental variable
approach to recover the impact of quality choices on output.

From our analysis, we find a substantial quality-quantity tradeoff for dialysis treatments:
a centre can increase its patient load by 1.6% by reducing the quality of its treatments such
that the expected septic infection rate increases by 1 percentage point, holding input levels and
productivity constant. This corresponds to an elasticity of quantity with respect to quality of
—0.185 at the median, with an inter-quartile range from —0.127 to —0.251. Equivalently, holding
the number of patients constant but allowing a one standard deviation increase in the targeted
infection rate would reduce a centre’s costs by the equivalent of five full-time employees, which
almost 40% of the staff at an average centre.

In an extension of our model, we allow for a heterogeneous quality-quantity tradeoff across
providers. By making the production frontier’s slope a function of each centre’s scale or input
mix, we find that the tradeoff depends on a centre’s capital-labour ratio. Specifically, a high
capital-to-labour ratio corresponds to a steeper-than-average tradeoff (i.e. centres can increase
output more for a given decrease in quality), while centres with relatively more labour have a
flatter tradeoff. Although intuitive, our finding that the quality-quantity tradeoff depends on a
centre’s input mix and scale is, to our knowledge, novel in the healthcare literature.

3. While we control for observable differences in patient characteristics, unobservable differences may still affect
centres’ input and quality choices.
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In addition to informing policy discussions surrounding productivity in health care, our
article also contributes to the growing literature in empirical industrial organization related to
the estimation of production functions. These methods have a long history in economics, with
much prior work focused on selection and simultaneity biasH In light of this, more recent work
has developed structural techniques that use centres’ observed input decisions to control for
unobserved productivity shocks and overcome endogeneity problemsﬁ We extend these methods
to incorporate observable measures of output quality into the production function, which is
necessary for healthcare applications. To our knowledge, we are the first to apply these methods
to a healthcare setting with the goal of measuring a quality-quantity tradeoff1 Our work also
connects to the literature on firms’ quality choices within regulated industries
[1989; ICrawford and Shumi, [2007), as measuring the tradeoff is central to understanding the full
impact of regulations.

The remainder of our article continues in the following section with a description of the
outpatient dialysis industry and our data sources. Section [l proposes a structural model for
estimating a production frontier in the presence of unobserved productivity differences and an
endogenous quality choice. Sectiondlshows how variation in our data can be used to identify the
model. Section B outlines the implementation of our estimator for the parameters of the model,
while Section [l presents our estimation results. Finally, Section[Z]concludes with a discussion of
our findings’ implications for policy analysis.

2. THE DIALYSIS INDUSTRY AND DATA

The demand for dialysis treatments comes from patients afflicted with end-stage renal disease
(ESRD), a chronic condition characterized by functional kidney failure that results in death if
not managed properly. Patients with ESRD have only two treatment options, a kidney transplant
or dialysis. Due to the long wait-list for transplants, however, nearly all ESRD patients must at
some point undergo dialysis, a medical procedure that cleans the blood of waste and excess fluids.
Patients can receive different dialysis modalities, with haemodialysis, a method that circulates a
patient’s blood through a filtering device before returning it to the body, constituting 90.4% of
treatments (Centre for Medicare and Medicaid Services). The typical dialysis regimen calls for
three treatments per week lasting 2—5 hours each, with the duration dictated by a nephrologist to
meet clinical thresholds. Although treatment lengths depend on individual patient characteristics,
such as the severity of ESRD, treatment frequency rarely deviates from the standard protocol of
three sessions per week/[]

Patients receiving dialysis in the U.S. primarily do so at free-standing dialysis facilities, which
collectively comprise over 90% of the market (Iﬁm )H Medicare’s ESRD programme,
instituted by an act of Congress in 1973, covers 90% of these patients; notably, all patients with
ESRD become eligible for Medicare coverage, regardless of age, and the programme now includes

4. Seem (IZQ_le for a recent review.

5. %g% (1994). [Ackerberg er afl ©013), and [Cevinsohn and Petrid £003).

6. M) consider quality choices among hospitals using a revealed-preference approach
rather than outcome-based quality measures. @) estimate a quality-adjusted cost function for
nursing homes.m M) use a structural approach to measure the impact of healthcare IT on hospital productivity,
but do not consider output quality.

7. Generally, Medicare reimbursements are limited to three sessions per week.m m) argues that this limit
may lead to inadequate dialyzing for some patients.

8. Other options for receiving dialysis include hospital emergency rooms and in-home treatments.
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over 400,000 individuals. Today, Medicare spends more than $20 billion a year on dialysis care—
approximately $77,000 per patient annually—which represents more than 6% of all Medicare
spending despite constituting fewer than 1% of Medicare patients (m, |2&Tl_1|).

Beginning in 1983, Medicare has paid dialysis providers a fixed, prospective payment per
treatment—the “composite rate”—up to a maximum of three sessions per week per patient.
Initially, payments did not adjust for quality, length of treatment, dialysis dose, or patient
characteristics, though Medicare began to adjust payments based on patient characteristics in
2005, which were approximately $135 per session throughout the course of our study. Many have
speculated that this payment structure affects the quality of dialysis treatments, such as

) who states, “Research on the relationship between payment for dialysis and the quality
and nature of the process is not definitive, but there is evidence that practices such as dialyzer
reuse, staffing reductions, and scheduling inflexibilities (fewer dialysis stations per patient) were
encouraged by financial pressures”.

Dialysis requires constant supervision by trained medical professionals, as patients must
remain connected to a station for several hours while being treated. Prior to treatment, staff
connect the machine to a patient by inserting two lines into a vascular access and assess his
condition. During treatment, staff must continually monitor patients and treat any complications
that arise (e.g. hypotension). Following treatment, staff disconnect the patient from the station
and assess his condition a final time before discharge; they then clean and sterilize machines
in advance of the next patient. As a result of this labour-intensive and hands-on care, the cost
per patient treated necessarily increases with the average amount of time devoted to treatments
and cleaning. Labour costs, which consist largely of nurses and technicians’ wages, reflect this,
accounting for approximately 70%—75% of a facility’s total variable costs (Eard and Kaserman,

200d).

Centres’ employees have varying skill levels, with registered nurses (RNs) comprising the
majority of staff. Technicians, who have less-extensive training than RN, also treat patients and
can do so with only a high-school diploma and in-house training (although they must eventually
pass a state or national certification test). Notably, centres cannot quickly react to changes in
productivity by hiring more workers due to persistent nurse shortages and the additional training
and certification required to become a dialysis nurse. As an example of this, for-profit dialysis
chain Fresenius claims in an internal report that, “In practical terms, nurse staffing turnover is a
costly proposition because of the training required to bring new hires up to speed”[] Centers also
must have board-certified physicians as medical directors (usually a nephrologist), but commonly
have no physician on site. Medicare does not mandate a specific staffing ratio for dialysis centres,
although some states do.

In addition to staffing levels, another significant decision for dialysis facilities is the number
of stations to operate. Each station can serve only one patient at a time, and stations must be
thoroughly disinfected after each use. Centers vary widely in terms of size, ranging from 1 to 80
stations. Based on industry reports, a typical dialysis station costs $16,000 and has a useful life
of approximately seven years (Imerman and Ottd, [2004).

Along with labour and capital decisions, centres must also choose how much effort to put
towards providing high-quality care, the central focus of our study. Quality in this setting can
mean many things, from the effectiveness of dialysis in removing urea from blood to the comfort
of patients during treatment. We focus on a dimension of quality directly related to improving
patients’ health, a patient’s risk of contracting a septic infection, as such infections are particularly

9. See “FMS Pathways: Nursing Shortage”, http://bridgesights.com/hillwriter/Nursing%20Shortage.pdf
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1076 REVIEW OF ECONOMIC STUDIES

costly and life-threatening for patients. As an alternative measure of quality, we also consider
centres’ excess mortality rates, described below.

Centers can allocate their labour and capital resources in ways that improve patients’ health
outcomes, but doing so comes with the opportunity cost of treating fewer patients. For example,
infections stem in large part from the exposure of a patient’s blood during dialysis, making the
cleanliness of the centre and its stations a key determinant of health outcomes. Because dialysis
sessions require up to one hour of preparation and cleaning, the centre has considerable control
over its targeted infection rate, as health professionals who follow straightforward procedures

can virtuallE eliminate their patients’ risk of contracting infections (Pronovost er all, 2004;

I

Centers may also have some limited scope for shortening patients’ treatment times, which
also would represent a reduction in treatment quality at the margin In an international survey
of dialysis centres, [Lentori er g/} (2012) found that the average treatment time in the U.S. was
214 minutes, with a 95% confidence interval of 197 to 231 minutes across centres@ This study
also finds that longer treatment times are associated with lower infection rates and better rates of
survival.

Reducing the risk of infection and mortality with either longer cleaning times or longer
treatment times comes with the opportunity cost of treating fewer patients due to the resource
constraints of the facility, which may ultimately reduce the centre’s profits. That is, because a
facility’s reimbursement per treatment does not vary with the treatment’s duration or thoroughness
of cleaning under Medicare’s prospective payment system, a facility’s profit per treatment
decreases as treatment and cleaning times—and, hence, costs per patient—increase. In essence,
the tradeoff faced by centres stems from their choice to either improve treatment quality or
decrease costs[J

An extensive medical literature has examined these tradeoffs in health care more generally,
mostly from an accounting perspective (Weinstein and Stason, [1977). Morey et all (1992), e.¢.
found that a 1% increase in a hospital’s quality of care increased costs by 1.3%; m
) found that low-cost hospitals had slightly worse risk-adjusted outcomes for common
medical conditions; and|Laine er /] 2009) found that efficient wards struggled to maintain high-
quality standards for conditions that require time-consuming nursing procedures. Building on this
literature, we consider the tradeoff using a structural model of healthcare provision that controls for
possible confounding factors, such as centres’ endogenous quality decisions and the measurement
error that arises from using observable outcomes as proxies for centres’ unobservable choices.

To study the relationship between the quality and quantity of treatments, we use a dataset
derived from annual reports compiled by the Centers for Medicare and Medicaid Services
(CMS) for each dialysis facility across the country. In December 2010, ProPublica, a non-profit
organization dedicated to investigative journalism, obtained these reports under the Freedom
of Information Act and posted them online. We systematically downloaded all individual

i

10. There may also be differences in the quality of dialysis stations in regards to how efficiently they can be cleaned,
although this is not highlighted in industry reports or CDC guidelines that emphasize thorough cleaning and sterilization
of machines, the use of appropriate disinfectants, and the monitoring and appropriate cleanup of blood and other fluid
spills (CDd Rool).

11. Although patient treatment times are dictated by a nephrologist, slight deviations between the prescribed
treatment time and the actual treatment time are at the discretion of the centre.

12. Average treatment times in the U.S. were the shortest of the 12 countries surveyed in the study.

13. Critics allege that facilities may sacrifice their quality of care in pursuit of efficiency, turning over three to four
shifts of patients a day. And while policy makers contend that technicians should not monitor more than four patients at
once, patient-to-staff ratios exceed this guideline at many facilities. At the extreme, inspection reports allege that some
clinics have allowed patients to soil themselves rather than interrupt dialysis mﬁ, M).
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TABLE 1
Summary statistics
Variable Mean St. Dev.
Patient years 50.856 31.913
FTE staff 13.484 7.769
Net hiring 0.182 3.868
Zero net hiring 0.127 0.333
Stations 18.612 7.877
Zero net investment 0.923 0.266
Septic infection rate 12.504 6.399
Excess mortality 1.041 0.405
Number of centres 4,270
Number of centre-years 18,295

Notes: Summary statistics from the dialysis facility reports. The unit of observation is a
centre-year. Patient Years is the annualized number of patients treated at a centre. FTE
Staff is the number of full-time equivalent nurses and technicians at the centre. Net Hiring
is the annual change in FTE staff. Zero Net Hiring is a dummy variable equal to 1 if a
centre had no net change in FTE staff that year. Stations is the number of dialysis stations
at the centre. Zero Net Investment is a dummy variable equal to 1 if a centre had no net
change in stations that year. Septic Infection Rate is the percentage of a centre’s patients
that contracted a septic infection that year. Excess Mortality is the ratio of actual deaths
to the number of deaths projected by CMS based on the centre’s patient characteristics.

reports covering 2004—8 and constructed a usable dataset. The data include detailed centre-level
information on aggregated patient (e.g. age, gender, co-morbid conditions, etc.) and facility (e.g.
number of stations and nurses, years in operation, etc.) characteristics.

Table [[l presents selected summary statistics from the data, with several variables deserving
note. First, CMS analyses individual patient records and calculates the number of patient-years
attributable to each centre (e.g. a patient treated at a centre for six months is counted as one half
of a patient-year). We use this variable as our measure of output, as it provides an accurate record
of dialysis provision that accounts for partial years of service due to death, transfers, transplants,
newly diagnosed patients, and so forth[] We also use the number of full-time equivalent (a
weighted mix of full-time and part-time) employees at each centre as our measure of labour and
the number of dialysis stations as our measure of capital. The average centre has 13.5 full-time-
equivalent, patient-facing employees and increases its staff by the equivalent of one full-time
employee each year (although 12.7% of centres have no net change in employment in a given
year). In terms of capital stock, the average number of dialysis stations used by a centre is 18,
making the purchase of a new machine a significant investment; reflecting this, centres have zero
net investment for 92% of the centre-year observations in the data.

We use a centre’s hospitalization rate from septic infections as our primary measure of quality,
which averages 12.5% per year and has a standard deviation of over 6%. Finally, in addition to
the mortality rate at the centre, CMS includes an expected mortality rate calculated from data on
individual patient characteristics (only centre-average characteristics are publicly available). We
construct our excess mortality variable as the ratio of realized mortality to expected mortality;
this ratio is very close to one on average, but has substantial variation across centres.

In Table P we report several factors that may influence a centre’s decision to favour quality
over quantity, while in Section3.2l we examine whether any of these proposed shifters are indeed
correlated with centres’ quality measures. First, states intermittently inspect dialysis centres to

14. Since treatment is mostly standardized at three treatments per week and the goal of dialysis is to clean the blood,
we do not consider differences in treatment times as output variation.
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TABLE 2
Potential quality drivers
Variable Mean St. Dev. N
State Inspection Rate 29.335 11.640 18,221
Time Since Inspection 1.634 1.813 18,221
% Patients Referred by Nephrologist 69.441 20.346 11,342
Competitors 7.826 13.095 18,221
For Profit 0.883 0.321 18,221

Notes: Summary statistics from the dialysis facility reports. The unit of observation is
a centre-year. State Inspection Rate is the percentage of centres that were inspected in
the centre’s state that year. Time Since Inspection is the number of years since a facility
was last inspected by regulators. % Patients Referred by Nephrologist is the percentage
of a centre’s patients who were referred by a nephrologist. Competitors is the number of
competing facilities in an HSA. For Profit is a dummy variable equal to 1 if a centre is
for-profit.

ensure that they meet regulated standards of care. States vary in terms of inspection rates, as the
average state inspects 29.3% of its centres each year, with a standard deviation of 11.6%. Because
a centre that faces a greater likelihood of inspection may take measures to improve its quality,
those in states with more frequent inspections may have a stronger incentive to maintain high
quality standards. Similarly, a centre that has not been inspected in many years may have more
unaddressed quality issues. The average number of years since a centre was last inspected is 1.6
years, with a standard deviation of 1.8.

In addition, centres that rely more on referrals from nephrologists may have a greater
incentive to maintain high-quality standards, as a nephrologist may advocate on his patient’s
behalf in the event he receives poor treatment or refer patients to better-performing facilities. The
average centre receives 69.4% of its patients through referral, with a standard deviation of 20.3.
Furthermore, competition may discipline centres’ quality choices, as those that face the prospect
of losing patients to competitors may take steps to improve their quality. The average centre
has nearly eight competing centres in its market—defined as a hospital service ared'}—with a
standard deviation of 13.1. Finally, for-profit centres may favour quantity over quality due to their
explicit mandate to maximize profits. Nearly 90% of dialysis centres are for-profit.

3. AMODEL OF THE QUALITY-QUANTITY TRADEOFF IN DIALY SIS

To estimate the quality-quantity tradeoff in dialysis, we develop a model that accounts for both
the standard endogeneity problems associated with using observed input choices to estimate
production functions and the additional problem introduced by a centre’s endogenous choice
of treatment quality. The complication related to endogenous quality choices stems from the
unobserved (to the econometrician) choice made by centres that receive positive shocks to their
productivity: they may choose either to treat more patients, or to treat their current patients more
intensively.

15. Following the healthcare literature, we use hospital service areas (HSA) as our market definition for dialysis
centres. The Dartmouth Atlas determines HSA boundaries based on CMS data for patients’ actual hospital choices, and
therefore serves as a well-suited market definition because they explicitly incorporate patients’ travel patterns in a way
that geographic boundaries such as counties or MSAs would not.
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3.1.  The production technology

In each period, we model the provision of dialysis treatments as a stochastic two-output production
process, where the outputs are the number of patients treated and the quality of the treatments.
Given this setup, a centre faces a production frontier governing the number of patients it treats
and the quality of care it provides, with the frontier dictated by its staff, stations, and productivity.
Formally, we define a centre’s production possibilities frontier as

T(G.q)<F(k.t o). ey

The production function F(-) is the most familiar part of this constraint; it governs how the
centre’s (log) capital, k, (log) labour, ¢, and unobserved productivity, w, determine its overall
capacity for providing treatments.

The unobserved productivity term, w, accounts for all of the factors that impact a centre’s
production possibilities that are observable to the centre but not to the econometrician, such as
a centre’s square footage Because w affects firms’ quality and investment decisions, it also
reflects firms’ “anticipated” productivity from their assessment of unobservable staff quality
(e.g. how efficient their staff are at cleaning machines and taking care of patients), unobservable
patient characteristics (e.g. how well patients follow treatment protocols), and managerial ability.
Differences in centres’ patient populations are particularly important in a healthcare setting
such as dialysis where variation in patient characteristics may lead to large differences in each
centre’s ability to treat patients. For example, highly educated patients may follow treatment
protocols more closely and therefore require less attention from technicians while being treated [
Importantly, we will allow ® to change over time, so that centres’ perceptions of their own
productivity can evolve as they hire new staff, acquire new capital, or simply gain operational
experience.

Our approach, which is common in the production function literature, assumes these
differences in unobserved productivity can be summarized by a single index, this implies that
all of the differences impact the production frontier in the same way. This assumption holds in
our setting because all centres face the same choice following an increase in productivity: they
can either treat more patients (e.g. by shortening cleaning or treatment times), or they can treat
current patients more thoroughly. For instance, if a centre’s patients follow treatment protocols
more closely than other centres’ patients do, then this would free the centre either (i) to treat
more patients because it devotes less time to dealing with complications that arise, or (ii) to
spend additional time intensively cleaning machines and advising patients, which ultimately
improves outcomes but would not appear in a raw productivity measure like output-to-labour
ratios. Similarly, better trained staff may be more efficient at cleaning machines or evaluating
patients, making both labour and capital more productive. Finally, better designed stations may be
easier to clean, allowing the centre either to treat more patients or clean stations more thoroughly
in the same amount of time. Given that the fundamental tradeoff we study is based on how much
time a centre allocates to treating each patient (including station cleaning times), we believe that
allowing all heterogeneity to be summarized by a scalar index is a sensible simplification in an

16. Below, we use a superscript to denote productivity at a particular point in time during a period of the model.
Here, we use @ without superscript to denote an argument of the production function. The timing of the model and the
evolution of w is presented in the following section.

17. Although our data will allow us to control for a number of key patient characteristics, some will remain
unobserved and therefore must be captured by w.
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industry where “better stations”, “better patients”, and “better staff”, all have the potential to
make other factors more productive

The transformation function, 7'(-), determines how the centre can divide its productive capacity
between the two targeted outputs, the number of patients treated and the quality of these treatments.
The first output, yj;, is the centre’s targeted (log) number of patient-years for the period. The second
output, gj, represents the quality of its treatments and is a scalar index representing the centre’s
targeted infection rate. We assume that 7'(-) is differentiable and increasing in both outputs, and
in estimation we will adopt a parametric form for 7'(- ).

The centre is unable to choose either its patient load or its infection rate directly. For instance,
some patients will either die for reasons outside of a centre’s control, receive transplants and
no longer need dialysis, or transfer to other centres; conversely, a centre’s patient load may
increase unexpectedly when new patients arrive at random intervals. Patients’ infections are also
difficult to predict because they will depend not just on the centre’s cleaning protocol, but also
on whether infectious bacteria exist in the centre. Therefore, instead of modelling the centres
as perfectly choosing their quality and quantity, we instead assume they choose targets (y,q)
that are stochastically related to the observed number of patients and infections. For quantity,
this is a standard approach in the productivity literature, where an “unanticipated” productivity
shock or measurement error term is typically included in the production process. For quality,
this unanticipated shock between the targeted and realized infection rate is closely tied to the
nature of infections. Although centres can implement procedures to reduce infections, such as by
devoting more time to cleaning machines, many factors outside the centre’s control also influence
the realized infection rate. For example, the ability of a patient’s immune system to fight off a
particular bacteria may depend on his or her previous exposure, which is less likely to be known
by the centre’s manager when she sets quality standards.

3.2.  The timing of dialysis centre decision making

We now turn to how the centre makes its choices regarding quality, hiring, and investment.
Although we are primarily interested in the centre’s choice of quality, the hiring decision is an
important part of the model because we will adapt the insights of [Qlley and Paked (1996) to
control for a centre’s unobserved productivity.

At the start of the period ¢, each centre j observes its state, (kjt,Kj,,xj,,wj%). The vector xj;
contains observed variables that affect the centre’s incentives for providing high-quality care
but that do not directly affect its productive capacity (such as a state’s inspection rate). The
assumption that the variables in xj, do not affect the production process directly makes them
useful excluded variables for tracing out the production frontier, as we discuss in Section @l In
practice, we consider a variety of incentive shifters in xj;, including a centre’s for-profit status, its

18. Ideally, we would include multiple dimensions of unobserved productivity—e.g. separate terms for labour
or capital productivity, or separate terms for producing output or quality. Recent work byl]lq:aszglskm_d_]_auma.n_dmd

) andm M), building in part onlm M), propose using a centre’s first-order conditions of profit
maximization to allow for multiple dimensions of heterogeneity. Unfortunately, since we do not explicitly model centre’s
objectives, this approach cannot be applied in our setting.

19. Note that “quality” here reflects how carefully the centre acts to reduce the risk of infection and improve health
outcomes, not the infection rate itself. As we discuss in Section Pl “quality” can have many dimensions for patients,
such as the likelihood of becoming sick, the amount of time spent waiting for treatments, the convenience of the centre’s
operating hours, or even having televisions available during treatments. Despite this, we focus on one specific outcome,
low septic infection risk, which is arguably the most prominent dimension due to its severe impact on patients’ well-being
and its direct connection to quality choices.
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state’s inspection rate, and the time since it was last inspected Finally, the centre’s assessment of
its own productivity, a)th, is not observed by the econometrician. We denote this assessment with
a superscript ¢ since it is the productivity centres consider when making their quality decision.
As we explain below, a centre’s assessment of its productivity will change during the period as it
observes its true production and infection rates.

The period consists of the following sequence of events:

(1) Quality and Quantity Choices Made. Based on its initial state, the centre chooses its
targeted level of quantity and quality for the period, (¥,g), such that it maximizes the
objective function described below subject to the production constraint (IJ).

(2) Production Occurs. Based on its chosen target, the centre treats patients and observes
realized outcomes for patient loads and infections, (y,q). The centre also updates its
beliefs about its productivity to .

(3) Hiring and Investment Choices Made. After observing production, the centre’s state is
updated to reflect what has been learned about its productivity, becoming (kj, ¢, Xjz, a);lt).
With this information, the centre decides on hiring, %, and investment, i; newly hired
workers and invested capital become available at the start of period 7+ 1.

(4) New State Realized. In line with the literature, we assume that centres’ expectations of
productivity follow an exogenous Markov process between periods ¢t and 7+ 1,

q 1 q h
E[a)j,t—l—l |I],t] _E[wj,t—l—l |wj,t]’

where [; ; represents centre j’s information set at the end of period 7. Also following the
literature, we assume this process is stochastically increasing in w;?t (asin @, @)
and that the state variable xj; moves according to an exogenous Markov process (similar

to[De Loecked, RO11]).

Based on these timing assumptions, centres make decisions at two distinct points during
a period. First, they decide how to allocate their effort between quality and quantity. Second,
they decide how to adjust capital and labour for the future after observing their current period’s
production. The key assumption is that a centre can quickly adjust its allocation to quality versus
quantity after observing w?, whereas it must make its input decisions for the next period before
that period’s w? is revealed. This restriction reflects the relative ease with which dialysis centres
can allocate time across tasks relative to adjusting labour or capital, as centres must train and
certify staff before they can begin treating patients. For example, to adjust targets to favour quality
over quantity, a manager could advise her centre’s staff to take extra precautions when treating
patients. Alternatively, a centre may reduce quality in favour of quantity by placing less emphasis
on cleanliness and more on speed dEmnmms_LeLaL],lZDDﬂ). At the same time, even though a centre
can dictate these policy changes more quickly than it can make hiring or investment changes, a
lag still exists between a centre’s decision about quality and its actual implementation. Within
the model, this is reflected in the fact that the centres observe their productivity change during
production (from qut to wj};) but cannot react to it by altering their quality choices. This seems
reasonable in our context given that health outcomes cannot be observed until after treatment is
provided.

20. We discuss the appropriateness of excluding these variables from the production process in Section 5.2} We
also show that the model is robust to changes in the set of incentive shifters.
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3.3. The center’s quality decision

Prior to production, the centre chooses its targeted level of output and quality for the period,
respectively (3,g). The centre’s payoff is determined by actual outcomes, which are unknown
to the centre when it makes its quality-quantity choice. We assume quality choices are fully
flexible from period to period and that quality and output do not affect future states, implying
that the centre’s quality-choice problem does not have dynamic links 2] The centre chooses 0,9
to optimize the static problem

w(k,£,x,w?)=max E[p(y,q,k,£,x)]
y.q

subject to: T'(3,q) < F(k,£,w?) )

y=y+e’
g=q+e.

The payoff function p(-) represents the returns a centre receives from its realized output and
infection rate in the current period given its state variables. As dialysis centres’ objectives are
difficult to model directly, we remain agnostic as to the precise form of this function other than
to assume that it is increasing in both output and quality. For example, one might think of the
firm’s payoff as

p(y.q.k. £, x)=my—Px(1—q)—=G(k,L), 3

where 7 represents the marginal profit from treating a patient; P represents a penalty from being
found negligent due to an infection that occurs during an inspection year; the incentive shifter x (or
afunction of x) in this example may represent the chance of being inspected given state inspection
activity; (1 —g) is the realized rate of infection and G(k, £) are the fixed costs of operating a
centre of a given size. It is clear in this simple setup that, because x changes the relative payoffs
of y and g, it should affect the optimal allocation of resources—and hence provide variation in
q(k,£,x,w?) that is independent of the production function variables (k, £, w?).

Although (@) is a plausible start for specifying a payoff function, an advantage of our method
is that it does not require an explicit form for p(-), which will be challenging to derive in
healthcare settings. In addition to being an industry with a sizable number of not-for-profit firms,
the health-economics literature in general has struggled with how to model the objectives of
doctors given that the Hippocratic oath, though only informally enforceable, implies some non-
profit motive driven by patients’ welfare. Moreover, factors such as torts, malpractice insurance,
social reputation, and professional sanction through medical boards all play a role in shaping
doctors’ incentives. Untangling these incentives would be interesting, but is well beyond the
scope of our article. However, we can still estimate the key fechnological parameters of T(-)

21. Our assumption that the number of patients treated in the current period does not affect the state of the centre in
subsequent periods is common in the literature. Our assumption that current levels of quality have no dynamic implications
is stronger, owing to the possibility of long-lasting reputation effects; however, one could imagine accounting for the
effects of reputation through per-period profits (e.g. the centre immediately pays for the discounted future costs of low-
quality performance). Extending the model to allow for a long-run reputation would require an additional state variable
and a precise model of how quality affects reputation.

22. For notational clarity, we suppress firm and time indices where they are clear from the context throughout the
remainder of the article.

23. We say we use infection rates as a proxy for quality. As they are negatively correlated, it might be more intuitive
to say we use the negative infection rate, but this quickly becomes tedious and we avoid doing so. The two approaches
are clearly isomorphic.
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without directly modeling the incentives encapsulated in p(-). That is, we only use the fact that
we observe some variable x that shifts these incentives on the margin.

Returning to the centre’s quality-quantity problem, the expectation in @) is taken over (&7, £9),
which represent the random deviations from the centre’s targeted quantity and quality levels and
its observed outcomes. By construction, these variables are mean zero and uncorrelated with the
centre’s information set when it makes its quality decision.

We will assume that the demand for dialysis is inelastic in the sense that a reduction in g
will lead to an increase in y through the production frontier, which will result in a corresponding
increase in the number of patients treated. This fits with the tight capacity in the industry, as
reflected by wait-lists for treatment and the opening of new centres in many markets

Before moving to the centre’s hiring choice, the following lemma establishes that the return
to labour is increasing in productivity, which will be important for establishing the invertibility
of the hiring policy in Proposition [[l below and which motivates using hiring as a proxy for
productivity as a part of our estimation strategy.

Lemma 1. The centre’s expected per-period return to labour is increasing in w9; i.e. %
increasing in 9.

3

is

)

We provide the proof in the Appendix. Intuitively, increases in both £ and w? relax the
production constraint, which, due to non-satiation, must always bind if the centre is acting
optimally. This binding constraint implies that the return to increasing ¢ is increasing in any
variable whose only effect is to relax the constraint further, such as w9.

3.4. The center’s hiring and investment problem

After setting its quality-quantity target, treatments occur and the centre observes the number of
patients it treats and its infection rate for the period. In addition, the centre updates its beliefs about
its productivity according to @" =7+ ® and learns the realization of the shocks (£jyt, £th, 8;;))
Importantly, the components of this vector may be correlated with each other. That is, conditional
on both 8; and sjz being positive, we would expect the centre to raise its assessment of its own
productivity.

After observing patient loads and infection rates, the centre makes its hiring and investment
decisions for the following period. This choice has dynamic implications owing to the time it

takes to install new machines and train new workers. The Bellman equation for this choice is

Vh(k,z,x,wh):me;lx—c(i,h)ﬂeE[vq(kJri,e+h,x’,aﬂ’)|k,e,a)h,i,h], 4)
i,

where i is net investment and £ is net hiring, while the function c¢(-) captures adjustment costs for
investment and hiring

Our decision to model hiring with a lag reflects the institutional detail that training and other
adjustment costs are significant in the dialysis industry relative to the difficulty of altering current

24. In Section[@2] we perform a robustness check by dropping centres in markets where the ratio of stations to the
general population is particularly high, as these are the centres where a reduction in quality is most likely to lead to slack
capacity rather than increased output.

25. Without loss of generality, we could allow productivity within the period to evolve according to an unknown
stochastically increasing Markov process. Letting it evolve according to a random walk is notationally convenient because
Elo"|w?]=wi.

26. We can also allow c(i, k) to be zero, in which case time-to-build is the only hiring and investment friction.
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workers’ on-the-job incentives to strive for either more output or higher quality. We follow the
literature in assuming that hiring costs are differentiable and convex, except possibly with a fixed
adjustment cost at h= o7

The function V4(-) represents the value of the centre at the start of the period,

Vi, t.x,07) =7k, ,x,0?)+E[V"(k,€,x,0")k, €, x,0].

We adopt this notation because the centre’s perception of its own productivity evolves over the
course of the period from w? to " as the centre observes its own production process.

Based on the lumpiness of investment in this industry, we assume that the choice of next
period’s capital is discrete. In contrast, we view the hiring choice as effectively continuous. This
seems reasonable given a centre’s option to adjust nurses’ hours from period to period and that we
observe part-time staff in the data. Under these assumptions, the following proposition establishes
that, for a given level of investment, a one-to-one relationship exists between o' and the centre’s
hiring choice, h(k, £, x,o™).

Proposition 1. For any fixed investment level 1, the centre hiring function h(k,f,x,o") is
invertible with respect to " on the domain {(k,2,x, a)h) vk, L, x, a)h) =1} such that

o =h"V(h,0,k, 0,x).

The proof of this theorem makes use of results in Theorem 1 from[Paked (@) and Appendix
C from [De Loeckel (]2&1_]]). We show that, given Lemma (Il our problem can be written in such
a way that we can apply Theorem 1 from m (@) directly, where hiring is the inverting
variable instead of investment. We have the added complication, however, of controlling for
centres’ discrete investment choices: if a centre invests in a new station, the cost of this new
investment may lead the centre to hire fewer nurses than it might in a situation where it had lower
productivity but did not choose to invest. To account for this possibility directly within our data,
we can isolate cases where centres make the same investment choice (e.g. keep the number of
stations constant) and conclude that centres within a given investment tier that hire more workers
must have higher productivity. Furthermore, because i =0 in over 92% of the observed periods
in our data, any complication related to this point will be comparatively mild.

4. IDENTIFYING THE QUALITY-QUANTITY TRADEOFF

For our empirical application, we will adopt the following parsimonious functional forms to
describe the transformation and production functions:

T(je,qjt) =Yjt +qqjt )
F (K, Ljr, ) = Bkje + el + ). 6)

In short, we follow the common practice in the literature of assuming a Cobb—Douglas production
function, where wj; is a Hicks-neutral technology shifter. For the transformation function, we also

27. Such a fixed adjustment cost would lead to a “zone of inactivity” in which the centre does not adjust its
staffing level for a range of productivity levels. Clearly, a fixed adjustment cost at zero means that we cannot invert the
hiring function at #=0, and these observations must be dropped. However, under the model, this truncation only affects
efficiency. On the other hand, unanticipated zones of inactivity (say, a maximum allowable level of hiring) have the
potential to bias our estimates. The discussion on possible failure of the investment proxy in ,
321) applies to our hiring proxy. See also [Paked @, Remark 2). Recall that in our setting hiring is zero in 12.7% of
firm-year observations (Table[T).
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assume a Cobb—Douglas-like specification that parameterizes the production possibilities frontier
by assuming that a reduction in the infection rate of 1 percentage point (i.e. increasing g;; by 1) will
reduce expected output by a factor of oy, which is constant across centres. These functional forms
can be rationalized by assuming that centres optimally allocate their productive capacity between
the two tasks of treating more patients and reducing infection rates. If we assume, without loss of
generality, that all centres choose to operate on the production frontier, we can then re-write the
centre’s static optimization problem as choosing the proportion of resources, A, to devote purely
to output:

m(k,l,x,0!)= max E gk, 0, x
( @) max, [o(rv.q )

subject to: y=A(Brk + Bel+w?)

_ 12

g=——(Bxk+pet+o) @
%q

y=y+e’

g=q+e.

This problem yields an optimal policy for allocating resources, A(k, £, x, w?), which through the
two production constraints generates the centre’s targeted levels of output and quality, y(k, £, x, w?)
and g(k,£,x,w?). In a model with two independent outputs, such as cars and boats, A could be
viewed as literally assigning workers and capital to assembly tasks. In our setting, it is better to
think of A as a choice of production speed. A high A would mean placing an emphasis on running
many patients though the centre quickly—and hence less emphasis on cleaning machines and
evaluating patients’ health before, during, and after treatment. This allows the centre to increase y
by sacrificing g, with o, representing the key technological parameter that governs this tradeoff

We do not have data on how the centre allocates staff and machines, or on how it sets its
cleaning and evaluation policies, so we cannot claim to directly observe the centre’s choice of A.
Instead, we observe the realized outcomes, y and ¢, and therefore rewrite the problem focusing
on the choice of y and ¢ through X, adding the two production constraints to yield our production
frontier:

7w (k,£,x,w?)=max E[p(y,q,k,£,x)]
.9

subject to: y+agq=PBrk+ Pl +w? )

y=y+e’
q=q+e.

This specification of the centre’s quality choice maps directly into the more general model
discussed in the previous section and connects a centre’s quality target to observable outcomes. By
increasing the effort it puts towards providing high-quality treatments, the centre incurs additional
costs but increases the likelihood of delivering better outcomes (e.g. fewer infections and lower
mortality). On the other hand, a change in inputs or productivity shifts the production possibilities

28. Note that while o, only appears in the restriction for g, this is simply a normalization. To be precise, this
normalization is that the production function F(k,£,w?)=Brk+ el +w? is expressed in units of (log) output. If we
included a separate parameter for the transfer of “productivity units" to output, only the ratio of this new parameter and
a4 would be identified. Of course this ratio would still express exactly the tradeoff in which we are interested.
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frontier but does not alter the relative transformation between outputs. For instance, a centre with
healthier patients recognizes that its production frontier has shifted outwards but still faces a
tradeoff between treating more patients at a given level of quality or providing higher-quality
care for a given number of patients.

Our goal is to estimate this production frontier, but this is complicated in that we do not observe
centres’ expected output and quality. Instead, we observe realized patient loads and infection rates,
which are subject to both measurement error and unanticipated shocks. To account for this, we
assume that observed output is y=y-+¢&” and that the observed infection rate is gj; =g+9.
Substituting these into (), we arrive at the linear equation

y:—aqq—i—ﬂkk—i—ﬂgf—l-a)q—OlSq—Sy. ©))

This equation makes the potential sources of bias apparent. Estimating (@) by ordinary least
squares with data on (y, ¢, k, £) would be inconsistent, as the composite error term w? —ae? — ¥ is
correlated with observed quality for two separate reasons, simultaneity due to w? and measurement
error due to &9.

To identify the parameter that governs the quality-quantity tradeoff, ct,, as well as the
production function parameters 8, we must address three different issues: (i) independent variation
of g from the other variables that enter the production frontier; (ii) simultaneity due to the fact
that the centre chooses g—or equivalently in {@), A—with knowledge of w?; and (iii) attenuation
bias due to the fact that we do not directly observe g (centre quality), but instead only observe
a noisy proxy, ¢, the (negative) realized infection rate. We take different approaches to address
these issues: (i) our timing assumptions that allow productivity to evolve during production but
before hiring (separating w? and o) provide independent variation of §, while variation in x also
provide variation in firms’ quality choices (as we describe below); (ii) our dynamic model implies
that hiring this period to change the quantity of labour between this period and the next period can
be used to construct a control function to deal with simultaneity; and (iii) a second noisy outcome
related to the quality of care (our empirical approach uses the ratio of actual mortality to expected
mortality) is used as an instrument to address measurement error in the initial proxy outcome,
q. For expositional ease, we deal with these problems sequentially, starting with a model where
neither simultaneity nor measurement error is an issue, before building up to the full model we
estimate in the following section. We focus on recovering the quality-quantity tradeoff parameter
oy, asidentification of the B parameters is essentially identical to that presented inm
dlﬂ%) and|Ac_k_e_r_he_];g_gLaL] (]2Q]j). We provide the full estimation details, including estimation

of B, in Section 3

4.1. The simplest model

We begin with a highly simplified case of the full model in which we assume (i) the infection
rate is a perfect indicator of the quality choice—so ¢=¢g and there is no e9—and (ii) there is
not a heterogeneous productivity process (i.e. we drop w? and ™). With these assumptions, the
production frontier constraint @) becomes

y=—0gq+Brk+pBel—e, (10)

where we have substituted ¢ as in eq. (I0) y=y+&”. Since the error term &” is unanticipated by
the centre when it makes its quality decision (at the start of this period) and when it determines
its capital and labour levels through investment and hiring (at the end of the previous period),
there is no simultaneity problem in this version of the model. Similarly, with no &9, there is no
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measurement error problem. Therefore, as long as we have independent variation among (g, k, £),
we can consistently estimate the parameters (e, By, B¢) using ordinary least squares (OLS).
However, the optimization problem that governs the quality choice (or the resource allocation
choice) now implies that q:é(k,ﬁ,x) To see why this is an issue, suppose x did not vary
across centres, so we effectively have g=¢g(k,£). In that case, all centres with the same (k,¢)
must make the same quality choice. Furthermore, if the policy function is linear, then (q,k, £)
are co-linear and the parameters are not identified. If the centre’s policy function g=g(k,£) is
non-linear, then the parameters are identified with the help of the parametric assumption of the
production technology, though such identification off of the functional form of the production
frontier is clearly not ideal.

If we reintroduce x, however, the problem is relaxed even if we do not observe x ourselves.
Now, because the centre’s policy function is ¢ =¢g(k, ¢, x), independent variation is restored and
OLS successfully recovers the parameters. It is not necessary to use x as an instrument because
there is no endogeneity issue, but x provides a source of variation in g that allows us to identify
a4, which illustrates the importance of including x as an incentive shifter in the structural model.

4.2. Adding heterogenous productivity

We next incorporate heterogeneity in unobserved total factor productivity across centres. To
illustrate the need for our timing assumptions, we will begin with productivity being constant

over the period, as in|Ql]_e¢Land_Eal<_Q§ (]_12%), 0 w? = w = w. We continue to assume that quality
is perfectly observed through the infection rate, so we have

y=—agq+pPrk+pel+w—¢’, (11)

which introduces a simultaneity issue between g and w. Because productivity is a persistent
Markov process, there is also simultaneity between @ and the centre’s inputs (k, £), which are a
function of lagged productivity. [Olley and Paked (1996) show how to address this simultaneity
issue using the centre’s dynamic decisions. Under the assumptions of our dynamic model,
Proposition [I] shows that the centre’s optimal hiring policy, hje(Kjt, Ljt Xje, 0je) = Lig 1 — Ljr, 18
invertible in the productivity term for a given level of discrete capital investment (i.e. a change
in the number of stations)ﬁ, This means we can replace wj; in ([I) with the inverted hiring policy
h1 (h,i,k,€,x), where we control for the centre’s discrete level of investment i as part of this
inversion. Of course, B; and B, are not separately identified from the non-parametric inverted
hiring function, so they are subsumed into a general non-parametric function, resulting in the
potential semi-parametric estimating equation

y=—agq+®h,i,k,l,x)—¢". (12)

This equation addresses the simultaneity problem and is essentially the estimating equation from

the first stage of |QL | Paked (1996) adapted to our model.
mﬁ) point out a subtle identification problem with this equation, however,

which is very similar to what we discussed in the previous subsection. Recall that the policy
function for quality is g(k, £, x, ), and employing the same invertibility argument for productivity
we have

g=q(k,,x,h " (h,i,k,€,x)).

29. Recall that we have temporarily dropped @? from the model.
30. Recall that because gj; is flexible and has no dynamic implications, it does not enter the hiring policy.
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While this involves some abuse of notation, the point is that, under these assumptions, there is no
independent variation between ¢ and the variables of the non-parametric function ®(-) because
they are both functions of (h,i,k,£,x). Therefore, o, is not separately identified in @2). In this
case, as opposed to the previous subsection, we cannot appeal to x alone to provide the necessary
variation because it enters the hiring policy function, and hence ®(-).

ngeibexgﬁaﬂ (IZQ]j) consider several modifications of DlLe;LangLEa]de dlﬂ%) to address
this issue. Our approach adopts one which will be compatible with our measurement error concerns
below and which we believe fits the dialysis industry well: we make use of the timing assumption
that allows for an intra-period evolution of productivity in the form of w? and »". Notice that the
simultaneity issue is really due to the centre’s perception of its productivity. It is natural to assume
that, having observed output and the infection rates in the current period, the centre’s perception of
its productivity should evolve before it makes investment and hiring decisions for the next period.
This reintroduces independent variation between g and the non-parametric function because the
quality policy is g=¢q(k,£,x,w?), where the inverted hiring function yields ot =h"! (h,i,k,£,x).
The two are related through the assumption that o = w9+, where 2 is uncorrelated with the
centre’s information set when it makes its quality choice 1 In this context, £ can be thought of
as a “discovering productivity by doing” shock. Although we do not explicitly model a learning
process, the shock is meant to reflect the fact that the centre’s assessment of its own productivity
is likely to change when the task is actually completed. We can now write the first stage as

y=—agq+Ph,i k,l,x)—e?—¢”, (13)

where the new error term reflects the fact that we replace w? using inverted hiring and the
difference between productivity at the beginning and end of the period. This composite error
term is uncorrelated with ¢ and there is independent variation between g and the non-parametric
function d>(~)

[Ackerberg er a](2013) do not include a variable akin to our x, though doing so offers important
advantages. Namely, if x is dropped from the model, then all firms with the same production
frontier choose the same quality policy, g(k,£,w?). Although perturbations between w? and "
introduce variation between g and the non-parametric function ®(-), it is still the case that if x
does not vary, centres facing the same production frontier—i.e. the same k, ¢, w9—all choose
the same point on the frontier. As a result, the variation between w? and o only allows us to
identify o, at a point on the frontier (the optimal point, given k,£,®?) and the slope of the entire
frontier is identified off of functional form. Again, including incentive shifters in x relaxes this
issue, because now centres facing the same production frontier choose different levels of output
and quality due to differences in x. Note that, as opposed to the simple model discussed above, in
this model it is important that we observe x because it potentially plays a role in the hiring policy.

Of course, x only supplies useful variation if it actually leads firms to shift their quality
targets. We rely on a set of incentive shifters that includes the centre’s for-profit status, its state’s
inspection rates, and the time since its last inspection. In Section[3.2} we provide evidence that
these variables do, in fact, affect centres’ incentives to provide high-quality care.

31. The random walk assumption is for notational convenience. We could allow o"=E [a)h |k, 2, x,w?]+€® as long
as this expectation were increasing in w?. Since we are unable to recover w?, the random walk assumption amounts to a
normalization.

32. Note that at this point we are still assuming that quality is perfectly observed (i.e. no €7).
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4.3. Adding measurement error in the quality policy

Finally, we come to the full model by re-introducing measurement error in g by allowing the
infection rate to be a noisy signal of the centre’s quality choice. Here, we do not mean to say
that the infection rate itself is mis-measured, but instead that the infection rate is determined
by both the centre’s quality choice and some noise: sometimes bacteria do not infect a patient
even if the machine is not properly cleaned, and sometimes the centre follows its protocol but
a patient acquires an infection for reasons unrelated to dialysis. This means we observe g=
q(k,l,x,w?)+e4, and the first stage becomes

y=—0agq+®h,ik,l,x)—e® —oyel—e”. (14)

Although this introduces attenuation bias because g and €4 are correlated, it does not reintroduce
the simultaneity problem. The reason is that €7 is not known to the centre when it makes its quality
(or resource allocation) choice. Therefore, we follow the literature on classical measurement
error to address this issue by instrumenting for the infection rate with a second noisy measure
of quality, the (excess) mortality rate [ Specifically, we assume d =d (g(k, €, x,w?)) +&¢, where
d(-) is a monotonic function of quality and £ is uncorrelated with 9. After controlling for patient
characteristics and the centre’s quality, we would expect infections and deaths to be uncorrelated
at the centre level, and we can then use d as an instrument to identify o.

Although the validity of this assumption may appear questionable in the sense that infected
patients clearly have a higher death rate, the assumption holds if, after controlling for the centre’s
quality, individual patient outcomes are uncorrelated. To see this, suppose each patient r of
centre j has an individual risk of infection and death related to centre quality, g;, so that the risk
of infection is q; =gj+n" and the risk of death is dj’ =d(g;)+v". We allow these individual
infection and death shocks to be correlated for a given patient but we assume that (n”,v") are
drawn independently across patients. As a result, centre-level infection and death rates are Poisson
binomial distributions of the underlying individual risks. For centres with enough patients, the
covariance between centre-level infection and death rates is well approximated by

N N
1 L 1
COV(qj,dj)%m > COV(qj,df)=00V(qj,d(qj))+mE cov(n;,v)),
r=1

r,s=1

where the final term exploits the fact that cov( TI; , vjs )=0if r #s. Clearly, the second term vanishes
as the number of patents at the centre N grows large. With a mean number of patient years in
our sample over 50, it seems reasonable to believe that the correlation in centre-level averages is
being primarily driven by centre quality.

We acknowledge that if ¢4 and &4 are correlated, then our estimate of «; will be biased
downward, making our results conservative. This could happen either because N is not large
enough, or because patient outcomes are not independent after controlling for g and the observable
characteristics of the patient population. For example, if infections and deaths had a stochastic
component that was common to all patients in a centre (e.g. a virulent outbreak of staph infection
at the local hospital), our result would not hold. The most obvious correlated shock to patients’
infection and death rates, however, is infections spread through an improperly cleaned dialysis
machine, which is directly related to the centre’s quality choice when determining how closely

33. This is the mortality rate controlling for the expected number of deaths in the centre based on patient
characteristics, as discussed in Section[J]
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TABLE 3
Patient characteristics summary statistics

Variable Mean St. Dev.
Avg. Patient Age 61.518 4.381
Pct. Female 45.798 8.333
Pct. AV Fistula 43.016 13.477
Avg. Comorbid Conditions 3.026 0.826
Avg. Duration of ESRD 4.089 0.953
Avg. Haemoglobin Level 11.882 0.332
Number of Center-Years 18,221

Notes: Summary statistics from the dialysis facility reports. The unit of observation is
a centre-year. Avg. Patient Age is the average age of patients at a centre. Pct. Female is
the percentage of a centre’s patients who are women. Pct. AV Fistula is the percentage
of a centre’s patients who have an AV fistula. Avg. Comorbid Conditions is the average
number of comorbid conditions a centre’s patients have. Avg. Duration of ESRD is the
average number of years a centre’s patients have had kidney failure. Avg. Haemoglobin
Level is the average haemoglobin levelof a centre’s patients.

to follow cleaning protocols. In Section[6.2] we present a robustness check of the model where
we do not use an instrument for quality. The results of this experiment are consistent with the
presence of attenuation bias.

5. IMPLEMENTATION

We now turn to the details of the empirical analysis, beginning with the construction of our
quality proxy. We then discuss our choice of incentive shifters for x and provide some prima
facie evidence that centres with similar technologies actually do react to our incentive shifters in
the predicted way, thus justifying the inclusion of these variables in the estimation. Finally, we
describe the two-step estimator used to estimate the transformation and production functions.

5.1. Infection rate proxy for quality

Although we do not observe treatment quality directly, the data contain information on patient
outcomes that are correlated with a centre’s choices on this dimension. In particular, we focus on
the centre’s infection rate as an indicator of quality. This is only an imperfect measure, however,
because variation in the infection rate may be due to differences in patient characteristics across
centres rather than centres’ deliberate quality choices. To account for this, we control for centre-
level averages of several patient characteristics that influence infection rates. Specifically, we
use the (negative) residual from a regression of infection rates on patient characteristics as our
proxy for patient quality; this residual represents the variation in infection rates that remains
unexplained after controlling for observable differences in the patient pool, and therefore serves
as a proxy for the centre’s targeted quality level.

We control for several observable patient characteristics that influence a centre’s infection
rate beyond its quality decision, with summary statistics displayed in Table Bl Most notably,
we include controls for patients’ vascular access type, which can be either an arteriovenous
(AV) fistula, AV graft, or venous catheter. A patient’s vascular access method influences his
likelihood of developing a blood infection, as those with an AV fistula are significantly less likely
to experience clots or infections. In addition to a patient’s vascular access, other characteristics
have been shown clinically to affect treatment outcomes. Because centres’ patient loads vary
in terms of these characteristics, we also include controls for patients’ (i) average number of
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comorbid conditions, (ii) average duration of ESRD, (iii) average age, (iv) gender distribution,
and (v) average haemoglobin levelsPd Putting these centre-level average patient characteristics
together into the vector zj;, we estimate

]S't =2ZjtY —4ji,

where fj; is the realized infection rate at centre j in period ¢. The residuals from this regression
reflect the centre’s relative infection rate after controlling for observable patient characteristics,
which we then use as our measure of centre quality.

Even after controlling for observable characteristics, some unobservable differences in patient
health may remain, part of which may be observable to centres as they make their quality choices.
Within our model, we interpret these unobservable differences as differences in wj; across centres
along with other unobservable differences in productivity (e.g. management ability or unobserved
quality of inputs), and address them using a control function approach.

As discussed above, we account for expectational or measurement error in our specification of
the production function by including 8th and using a second outcome variable as an instrument, in
our case the excess mortality ratio that compares actual death rates at the centre to CMS’s expected
death rate based on individual patient characteristicsP] CMS uses this ratio as an indicator of
centre quality in its own reports, and we include this measure as a second noisy proxy for a
centre’s quality

5.2.  Centres’ quality incentive shifters

An important source of identification for our estimation procedure comes from variation in x, the
variables that affect the centre’s incentives for providing high-quality treatments. These variables
should consist of observable factors that affect centres’ incentives for providing high-quality care
without directly affecting centre productivity. That is, these variables should be excluded from the
production frontier (I) but shift outcomes through their effect on centre payoffs, o(-). Note that,
while the variables in x cannot directly enter into the production process, they may be correlated
with centres’ unobserved productivity. For example, our assumption rules out the possibility
that a non-profit centre could alter its production frontier simply by becoming for-profit while
keeping the same staff and management practices in place. At the same time, it does allow for
the possibility that low-productivity non-profit centres are more likely to enter into the industry
than low-productivity for-profit centres, which would generate a correlation between non-profit
status and productivity

34. Low haemoglobin levels are associated with anaemia and pose health risks for dialysis patients.

35. Individual-level characteristics are not released in our data to protect patient privacy.

36. As discussed earlier, for this instrument to be valid, the variation in excess mortality which is unrelated to centre
quality should be uncorrelated with the variation in the infection rate that is unrelated to quality. As discussed above, our
assumption will hold approximately even if mortality and infection outcomes are correlated at the individual level as long
as outcomes are uncorrelated across patients (after controlling for centre quality). Moreover, although infections do raise
the risk of death, they are the primary cause of fewer than 10% of patient deaths overall (m, M). In contrast,
over one-third of patient deaths stem from cardiovascular issues, which may be related to centre quality through the
effectiveness of monitoring for hypotension and other complications that arise during treatment. Conversely, the majority
of patients hospitalized with a septic infection survive. We include the death-rate ratio as an instrument rather than as
the primary proxy because it is less directly tied to the quality choices made by dialysis centres (e.g. cleaning protocols)
than the septic infection rate. Results are qualitatively robust when the roles of the primary proxy and the instrument are
reversed.

37. In Section &2l we explicitly allow centres’ productivity evolution to depend on ownership type, one of our
variables in x.
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We consider several variables that are likely to change a centres’ incentives for providing
more treatments versus providing higher-quality care, which we describe below. Although the
assumption that these variables do not directly affect the production frontier is not testable, we
can nevertheless verify they are correlated with health outcomesPY To examine the relationship
between quality and the observable variables in our data, we consider a series of fixed-effects
regressions of the septic infection rate on plausibly exogenous drivers of quality and patient
characteristics in Table ] The results suggest that centres facing stronger incentives to provide
high-quality care have better outcomes, indicating that centres adjust their quality level when it
is in their best interest to do so[J

First, we look at the time since a facility was last inspected by a state authority, as centres
with many reported violations face the possibility of losing certification [ Column (1) of Table
Hlshows that the infection rate increases a statistically significant 0.15 percentage points for each
year since a centre was last inspected, or about 11.8% at the mean. Note that the most likely
source of endogeneity bias for this regression—that regulators are more likely to target centres
with poor health outcomes for inspections—works against this result, making it a conservative
estimate. In addition, it seems unlikely that the number of years since a centre was last inspected
would directly affect its production frontier, so we include this variable in x.

We next turn to the state-level inspection rates. This incentive shifter relies on year-to-year
variation in funding and other local regulations to exogenously change the probability that a centre
is inspected—and hence affects the return to providing high-quality care (which presumably
reduces the risk of receiving health citations during an inspection). As shown in Column (2), we
find evidence that an increase in the state inspection rate is associated with a lower infection rate:
an increase in the inspection rate one standard deviation above the mean is associated with a 0.1
percentage point decline in the infection rate, on average, which is about 1% lower at the mean.
As with the number of years since a centre was last inspected, it seems unlikely that the state
inspection rate directly affects the production frontier of individual firms, so we also include this
as a potential incentive shifter.

Thirdly, we consider the possibility that the referral rates of nephrologists might affect
treatment quality. If nephrologists are able to ascertain a centre’s quality, then centres that are
more dependent on referrals will have stronger incentives to provide high-quality care. Column
(3) shows that a higher rate of referrals is associated with a lower infection rate, although this
correlation may be due to reverse causality—presumably nephrologists will not refer patients to
centres with poor quality records. Moreover, the referral rate is available for only three years of
our five year panel, severely reducing the number of observations in the data. For these reasons,
we do not include referral rates in x as a part of the structural model.

Fourthly, competition potentially shifts centres’ quality incentives because centres in highl
competitive markets may choose to improve quality or increase staff levels to attract patientsl%
We define the level of competition each centre faces as a categorical variable for having 0, 1, 2, or
3 or more competitors in the same Hospital Service Area (HSA), and the regressions show little

38. Asdiscussed above, the question of whether external forces influence dialysis facilities’ incentives for providing
high-quality care has been investigated in previous studies dﬂgaﬂ@[&amammxamn_and_&nﬂd M).

39. Of course, these regressions are subject to the critique that they are not robust to across-time changes in
productivity; our structural model does control for productivity changes over time.

40. We know only the year of the last inspection, so if a centre is inspected this year there are “zero” years since its
last inspection.

41. Although in principle the degree of competition is the outcome of an endogenous dynamic entry game between
players, we believe it is reasonable to model it as exogenous to the centre’s quality choice as the latter is a flexible
decision made on a much shorter time frame by centre managers, whereas the entry and exit decision of centres involves
a substantial sunk cost and is the result of a lengthy regulatory process.
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evidence that competition influences the quality of care provided by centres whether we include a
centre-level or market-level fixed effect. Although monopolists do appear to have higher infection
rates in the market fixed-effects specification in column (9), the centre fixed-effects specification
in column (4) is weaker and shows a non-monotonicity between 1 and more than 1 competitor.
Still, even though competition does not seem to have a strong impact on quality, we include it
in x as it is clearly appropriate to exclude competition from the production frontier, and it may
affect the centre’s hiring policies. We provide a robustness check where the model is estimated
without including the competition variable in Section[6.2] and all results remain unchanged.

Finally, we consider the effect of a centre’s ownership structure, as roughly 87.7% of centres
operate as for-profit entities. Among the for-profit centres, two major chains dominate, with
DaVita owning roughly 28% of centres nationwide and Fresenius 31%F A centre’s ownership
structure may affect its polices related to hiring and treatment quality: non-profit centres may,
on average, target a different weighting of quality over quantity, and even different corporate
owners may have different views on the risks and benefits of reducing quality to treat more
patients. Because there is almost no variation in a given centre’s for-profit status over time, we
consider the impact of for-profit status with market-level fixed effects in Column (7). We find
strong evidence that for-profits have worse health outcomes, with infection rates roughly 1.3
percentage points higher then non-profit centres in identical markets. Column (8) adds controls
for membership in the two major chains. It appears that, although DaVita’s average infection
rate is almost the same as unaffiliated for-profits’, Fresenius is somewhat lower. Although it is
certainly possible that ownership status is correlated with productivity, we see little reason why
the legal status of a centre should directly affect the production frontier. Therefore, we include
non-profit status, along with the affiliation with one of the two most prominent chains, in our
preferred specification of x. In separate robustness checks, we allow for centres’ productivity
evolution to depend on its ownership status, and also estimate the model dropping ownership
status from x. In both cases, our results on the quality-quantity tradeoff are qualitatively similar.

Although each of the regressions in Table[lsuffers from its own particular shortcomings (e.g.
both referrals from nephrologists and the likelihood of inspection are potentially endogenous
with respect to centres’ quality choices), taken together they provide consistent evidence that
plausibly exogenous drivers of quality do, in fact, influence a facility’s quality choices. Note also
that Specifications (1)—(6) control for facility-level fixed effects, so any time-invariant institutional
factors (e.g. the facility is in a region with sicker patients) are accounted for in the regressions. To
summarize, we include the following variables in our preferred specification of incentive shifters,
x: the number of years since a centre was last inspected, the state inspection rate, the extent of
competition, and the centre’s ownership structure.

5.3. Two-step estimation

To recover the parameters of the production frontier, we first note that a) —a) el

47> 50 we can
rewrite @) as

q

yjt__aqul-’_ﬁkkjt_'_ﬂfgjt_'_w ae],_ajt
Because (¢2,¢7 &7 /) are revealed to the centre after it makes its quahty choice and are uncorrelated

jit? ]z’
with the centre’s mformatlon set at the time quality and output choices are made, they do not
impose an endogeneity problem. Because centres’ expectations about a)h are a function of a)ﬂ,

however, we must still control for a) . From Proposition Il we know that a centre’s expectation

42. These averages are taken across all years in the data.
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about its productivity at the time of hiring can be recovered by inverting the centre’s hiring policy
at a fixed investment level such that

h —1 .
wjtzh (hjlyl]l‘sk]l‘vgjl»-x]l) (15)
Substituting (I3) into @), we arrive at our first-stage estimating equation,

Vi =—iqqje+ Bickj+ Beis+h " (e, ije. ki, e, i) — €57 — vy — &5, (16)

= —agqjr+ P, ijr. kjr, e, Xjr) +&j,
where ¢j; = —&) —ozsth —eft and @(hjr, ije, kit e, Xjt) = Bickje + Belje +h ™ hje, i ke, € Xijo)-

Due to invertibility requirements, we only have usable observations of (I6) whenever hiring
is non-zero['] Moreover, because the function h_1(~) depends on the level of investment, we
must estimate a separate ®(-) for each investment level. In the data, investment is zero in
92% of observations, therefore, in practice, we estimate the model using only observations
where the center did not invest while dropping observations with non-zero investment. Dropping
observations where hiring is zero and investment is non-zero collectively reduce the size of the
dataset by 19%, but this truncation does not bias our results if the model is correctly specified.
Comparing the dropped observations to those used in the first stage, centres with dropped centre-
years are slightly smaller on average but have similar quality outcomes (infection rates and
ratios of deaths to expected deaths). Running the descriptive analysis presented in Table ] on the
truncated sample also produces qualitatively similar results.

Finally, notice that the optimal policy for quality is gj; = q(kjr, £j¢, Xz, wjz), whereas the optimal
hiring policy is hjs = h(kj;, £jr, Xz, wj};). Therefore, the difference between a)th and a)]}; provides the
variation needed to separately identify a.

Although the approach above handles the endogeneity of a)th, we still have attenuation bias

because ¢j; and gj; are correlated through ath. To address this, we use a second noisy measure of

uality as an instrument in the second stage of a three-stage procedurelﬂ First followin gm
m%i we estimate E[y|hjs,ijt, kjr, Lj, Xjr] and E[q|hjz, ijz, kjr, £jt, Xj¢] non-parametrically using
local linear regressioni™ In doing so, we are careful to account for the possible discontinuity of
these functions at /;; =0 by considering positive and negative hiring observations separately.
We then estimate &, with the linear instrumental variables regression

Vi —EW e, ije, ki, €, xje ) = —ag(qje — Elqlhje, i, Kjr £, Xje )+ 8

43. Because there are likely adjustment costs to hiring, 2~ !(-) is not well defined when hiring is zero (multiple
productivity levels may lead to zero net hiring). We follow the productivity literature and drop observations of zero hiring
when estimating the first stage.

44. An alternative approach, followingm (IE), would have estimated yj, as a non-parametric
function of (gjr, hjr,kjr, s, xjs, i) and then estimated e, together with (B, B¢) in the second stage. This would have the
advantage of removing the requirement that g, be flexibly chosen during the quality stage. However, the first stage
estimation would be a non-parametric instrumental variables regression, introducing significant complications due to the
high dimensionality of the problem.

45. Bandwidths are chosen using an over-smoothed version of the rule of thumb proposed bym @), which
is a generalization of M @) to the multivariate case. Results are robust to using alternative bandwidths. We
have also experimented with the method of sieves which yields qualitatively similar results.

46. That is, only negative hiring observations are used in the local linear regression when 4;; <0, and only positive
hiring observations are used when £, > 0. Not doing this would raise the possibility of inconsistent estimates of these
expectations near zero hiring. Recall that at 2;; =0, the hiring function is not invertible, and these observations are dropped.
Hiring is negative in roughly 40% of our observations.
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where we instrument for (gj —E[q|hjt,ijt,kjt,ﬂj,,xjt]) with a second noisy measure of quality.
Here, we use the ratio of expected to actual deaths as this instrument, as discussed in Section

Finally, we recover &Di(-) from the non-parametric estimation
Vit +0qqjr=P(hjr, ijr, kjr, Ljr . Xjr) +&ji.

We recover the remaining parameters in a subsequent stage. Note that, given any B =(fy, B¢),
we can compute an estimate of unobserved productivity for each centre-year that has non-zero
hiring from

@it(B) = Dhje, ije, kit L, xje) — Bickje — Be -

Because wj; follows a Markov process, we have
wjr = g(wjr—1)+&jt, (17)

where g is a non-parametric function of wj,; 1 and &j; is a shock to productivity between time ¢ — 1
and ¢ that is independent of the centre’s time-# information setPd Thus, for any given B =(Bx, Be),
we can estimate g(-) from the equation

Vit +0qqjt — Bikjr — Beljr =g(@i—1(B)) +nje(B),

which follows from substituting the production function from (@) into the innovation of
productivity from (I7), where &, is the consistent estimator of &, recovered in the first stage@

At the true value of B, nj:(B) = ¢j; +&j;. Therefore, n;;(B) is uncorrelated with the time- labour
and capital variables by construction, and 8 can be consistently estimated using the moment

conditions
ﬂjz(ﬂ)kjt ] N
E[njz(ﬂ)gjt =0; (18)

we use (@) to estimate B via GMM. Finally, standard errors are calculated using the block
bootstrap, which accounts for statistical uncertainty in recovering the quality proxy, as well as
both stages of the estimation process.

6. RESULTS

We present results from our baseline model and two extensions, one which allows for the slope
of the production frontier to vary based on a centre’s capital and labour and another that allows
for heterogeneous transitions of productivity.

47. The instrument in the second stage of the Robinson procedure is dj —E[d |Rje, ije kje o £je, Xje ), where dj; is the
ratio of deaths to expected deaths.

48. We use a fifth-order polynomial sieve to approximate g(-); results are robust to using other orders.

49. We can estimate this equation using each observation that follows an observation used in the first stage. While
it might seem more straightforward to recover g(-) by regressing @;(8) on @;—_1(f8), this would require using only
observations where consecutive periods of hiring are non-zero (and investment is zero), reducing the available data even
further and introducing a potential selection problem since we would be censoring on a left-hand side variable (although
our results are robust to this approach). We thank David Rivers for pointing this out to us.
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TABLE 5
Transformation and production estimates
With Quality Without Quality
(1) 2 3 ) (5) (6)
Model OLS FE Model OLS FE
Quality, —a, —0.0155 —0.0026 —0.0017
(0.0037) (0.0007) (0.0004)
Capital, Sk 0.5204 0.4548 0.2608 0.5331 0.4572 0.2634
(0.0432) (0.0210) (0.1044) (0.0398) (0.0210) (0.1041)
Labour, B¢ 0.2436 0.6848 0.1985 0.2556 0.6834 0.1978
(0.0317) (0.0162) (0.0134) (0.0313) (0.0162) (0.0134)

Notes: Main model results with standard errors in parenthesis. Columns (1) and (4) are results from the full structural
model. Columns (2) and (5) are estimates using ordinary least squares. Columns (3) and (6) include a centre-level fixed
effect to control for productivity.

6.1. Baseline model

We now present our estimates of the production and transformation functions in the first column
of Table[dl As a point of comparison for our structural estimates, we include ordinary least squares
(OLS) and fixed effects (FE) estimates in the next two columns. Finally, we include results from
a specification that excludes the effect of quality choices, which are effectively estimates of a
standard one-output production function.

We first consider the baseline production function parameters 8; and S;. Estimates of these
parameters are strikingly different across methods, though similar with regards to whether or
not quality choices are included in the model. The comparison with the OLS and FE estimates is
instructive for several reasons. First, OLS does not control for endogenous input choices. Because
OLS relies on cross-sectional variation in stations to identify the labour and capital coefficients, it
must ignore the possibility of productivity differences across centres, resulting in a substantially
higher labour coefficient and, consequently, the suggestion of increasing returns to scale. We
believe that the finding of increasing returns to scale is due to endogeneity bias from unobserved
productivity, as more productive centres are likely both to use more stations and employ more
staff.

The FE procedure, in contrast, allows for productivity differences across centres but assumes
that these differences remain constant over time; i.e. the FE estimates identify the capital and
labour coefficients on the basis of year-to-year changes in centres’ inputs. Using this approach,
both the capital and labour coefficients fall substantially relative to the OLS results. We believe this
is primarily due to two factors. First, relying on only year-to-year variation makes measurement
error in both capital and labour inputs a more prominent concern. Because stations and employees
remain fairly stable over time, measurement error for hiring and investment decisions biases
these coefficients towards zero@ this is especially an issue for capital because of infrequent
investment. A second potential reason for the discrepancy between the OLS and FE approaches is
that capital and labour differences in the cross-section may proxy for unobserved time-invariant
characteristics (e.g. floorspace) that the FE specification captures through the productivity term.

In contrast to OLS and FE, estimates of our model yield a coefficient on labour of 0.24 and
a coefficient on capital of 0.52, which suggest decreasing returns to scale overall. To review,

50. For example, if a new station was installed in June of 2002, it will first be reported in 2003, but the difference
in the number of patients served in 2002 versus 2003 will underreport the impact of the new station that actually came
online for the second half of 2002.
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our structural specification employs a Markov process for productivity and uses both cross-
section and time-series variation to identify the parameters while at the same time using centres’
hiring choices to identify unobserved productivity. The relatively larger weight of capital in this
specification fits well with our understanding of dialysis: although hiring more employees may
allow a centre to treat more patients by speeding up the transition of stations from one patient
to the next, the number of patients being treated by the centre at any given time is necessarily
bounded by the number of available stations. While the labour coefficient is small relative to man

revious studies, it is in line with some micro studies in different industries (e.g. m:
|l2)E_1|); we know of no other study on the dialysis industry which could serve as a benchmark
for comparison. The finding of decreasing returns to scale may reflect omitted inputs, such as
floor-space and other forms of physical capital not related to the number of dialysis stations,
which are presumably captured by the productivity term.

We next turn to the primary focus of the article, the estimates of the quality-quantity tradeoff
in the transformation function, aqu All three specifications provide evidence of a statistically
significant quantity-quality tradeoff, although the magnitude of the effect is much larger in the
structural model than with either OLS or FE. The smaller impact of quality on output in the
OLS and FE specifications likely stems from endogeneity and attenuation bias. Because the OLS
specification does not control for differences in productivity, an estimate of « in this setup will
be biased towards zero. And while the FE approach controls for time-invariant productivity, if
centres’ changes in quality choices are positively correlated with changes in their productivity,
the FE estimate of oy will also be biased downwards. This effect, coupled with the attenuation
bias already discussed above, drives the estimates of the quality-quantity tradeoff towards zero.

The coefficient of 0.0155 from the structural model indicates that, holding inputs fixed, a
centre that improves its quality enough so that its targeted infection rate falls by 1 percentage
point would need to reduce its patient load by 1.55%. Across all centres, the elasticity of quantity
with respect to quality—i.e. the percent change in patient years corresponding to a percent
change in expected infections—is —0.185 at the median, with an inter-quartile range of —0.127
to —0.254. Equivalently, a centre could increase its output 1% by reducing quality such that its
targeted infection rate increases 0.65 percentage points, holding inputs and productivity fixed.
Alternatively, we can measure the cost of providing high-quality treatments in units of labour:
a centre can reduce its infection rate by 1% while maintaining its current level of output by
increasing labour 6.4%. Given that the average centre employs approximately thirteen full-time-
equivalent nurses, this roughly equates to expanding employment by an additional 0.83 full-
time workers. Moreover, reducing the targeted infection rate by a full standard deviation of 6.3
percentage points would cost the equivalent of roughly five additional full-time workers for the
average centre.

6.2. Robustness checks

Tablepresents a series of robustness checks on our baseline model. In the first column, we do
not instrument for the quality proxy with the excess death rate, but instead estimate the first stage
assuming that there is no error in our quality proxy. The estimate of the quality-quantity tradeoff
falls by about 30%, as would be expected if our quality proxy contained measurement error. This
suggests that instrumenting for quality is effectively controlling for attenuation bias.

The second column drops controls for patient characteristics, using the infection rate itself as a
proxy for quality targets instead. This has a minimal effect on the production function parameters

51. Note that, we report “—a,” in the tables, incorporating the negative sign in (I8).
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TABLE 6
Robustness checks

1)) 2) 3) “4)

No quality No patient No No low
instrument char. controls competition demand markets
Quality, —a, —0.0108 —0.0126 —0.0145 —0.0185
(0.0008) (0.0032) (0.0039) (0.0039)
Capital, B 0.5233 0.5174 0.5069 0.5420
(0.0414) (0.0430) (0.0442) (0.0437)
Labour, 8¢ 0.2467 0.2453 0.2215 0.2257
(0.0308) (0.0313) (0.0202) (0.0360)

Notes: Alternative specifications to the baseline results presented in Table 5, Column 1. Standard errors in parenthesis.
Column (1) does not instrument for the quality proxy with the excess death rate. Column (2) drops controls for patient
characteristics in the quality measure. Column (3) drops competition from x. Column (4) drops centres in markets where
the ratio of dialysis stations to the overall population is above the ninetieth percentile.

but reduces the estimated quality-quantity tradeoff, a result that may stem from the fact that our
measure of quality is now contaminated by unobserved factors previously controlled for through
patient characteristics.

The third column adjusts the baseline specification by dropping the extent of competition
from the set of incentive shifters in x. In our baseline estimation, we assume that competition
is exogenous in regards to the centre’s quality decision. We believe this is reasonable given the
timing of the model, as quality and hiring decisions can be adjusted much more rapidly than
entry and exit decisions (as discussed in Section[3.2] and footnote 41). One might be concerned,
however, that the entry and exit decisions of other firms could depend on a centre’s quality
decisions, in which case the model would be mis-specified. To investigate this concern, we re-
estimate the model without including competition in x. We find only very small changes in the
estimates, suggesting that our results are not heavily dependent on inclusion of competition as
an exogenous incentive shifterf?

The fourth column addresses the possibility that not all centres face inelastic demand for
dialysis. Our model of the quantity-quality tradeoff assumes that a centre is able to treat more
patients by reducing its quality. In markets where all ESRD patients are already being served,
however, there may be no additional patients to treat when a centre reduces its quality. (Note
that the unobserved slack demand would bias our estimates of the quality-quantity tradeoff
downward, making our estimates conservative.) To investigate this possibility, we re-run our
baseline specification while dropping centres in markets where the ratio of dialysis stations to
the overall population is above the ninetieth percentile@ That is, we drop those markets that
are most likely to have slack demand. We find that the estimate of the quality quantity tradeoff
rises to 0.0185, which is consistent with a bias from slack demand but well within our baseline
confidence interval. Because we do not directly observe measures of excess capacity in our data,
we find this robustness check reassuring in that the bias is small—and also conservative in that
our estimated quality-quantity tradeoff is understated.

Finally, we extend our baseline model so that the productivity process depends on both w; ;1
and centre characteristics, allowing them to differ based on for-profit status and whether the
centre belongs to one of the two major chains in the industry, Fresenius and DaVita. Several
other analyses of the healthcare industry have found that for-profits tend to be more productive

52. We have also run a version of the model that removes ownership status from the specification and the results
were similarly robust.
53. These results are robust to adjusting this threshold to drop up to one quarter of the data.
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TABLE 7
Heterogeneity in productivity process

) (2) 3)

Baseline Separable Nonpara.
Quality, —oy —0.0155 —0.0155 —0.0155
(0.0037) (0.0037) (0.0037)
Capital, Sk 0.5204 0.5130 0.4980
(0.0432) (0.0446) (0.0492)
Labour, 8, 0.2436 0.2375 0.2353
(0.0317) (0.0307) (0.0283)

Notes: Alternative specifications to the baseline results presented in Table 5, Column 1,
that allow the productivity process to depend on both w;,—1 and centre characteristics,
allowing them to differ based on for-profit status and whether the centre belongs to one of
the two major chains in the industry, Fresenius and DaVita. Standard errors in parenthesis.

than non-profits (Kessler and McClellan, [2002). Our analysis considers whether this stylized fact
holds in the dialysis industry after controlling for centres’ endogenous quality choices.

Specifically, we consider two alternatives to (I'Z). First, we allow centre-type, p, which can
be either non-profit, independent for-profit, DaVita-owned, or Fresenius-owned, to shift the level
of the production process,

wjr =38p+g(wjr—1)+Ejs.

Second, we consider a non-parametric approach and estimate a separate productivity process for
each centre-type,

wjr = gp(wjr—1)+&jr.

We do so because institutionalized management practices at the chain level may influence the
manner in which productivity evolves within a centre.

We present the results from estimates of these two alternative specifications in Table[Z with
the baseline results repeated for comparison purposes. With &, remaining the same across all
specifications because it is estimated in the first stage, we see that the production function estimates
are robust to alternative specifications of the productivity process.

6.3. Heterogeneity in the quality-quantity tradeoff

Our baseline model assumes that the slope of the production frontier is homogeneous across
centres. Although a reasonable starting point, the slope of the frontier may vary across centres
based on their size or capital-labour ratio. For instance, one might expect that, for a given number
of stations, adding nurses and technicians could make it easier to reduce infections compared to
adding more machines. To investigate this possibility, we consider a generalized form of (@) that
allows for the slope of the frontier to depend on the centre’s labour and capital inputs

¥ =—(atqqji+oigrdjikie +qeqjiie) +Bickje + Be i+, +ejr. (19)
With this specification of the production frontier, the distinction between the transformation
function and the production function is no longer straightforward, though the production frontier

itself is still well defined. The quality-quantity tradeoff for a centre is now a; +agikjs +ageljs,
and the returns to capital and labour are now likewise dependent on the centre’s quality choice.

54. Here in a slight abuse of notation we let ¢j; collect all the unanticipated error terms.
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TABLE 8
Flexible production frontier

(1) (2) (3)

Model OLS FE
Quality, —a, —0.0082 0.0057 —0.0069
(0.0254) (0.0047) (0.0024)
Quality x Capital, o/ —0.0364 0.0008 0.0023
(0.0109) (0.0025) (0.0012)
Quality x Labour, a4 0.0407 —0.0045 —0.0004
(0.0104) (0.0021) (0.0011)
Capital, By 0.4451 0.4569 0.2589
(0.0605) (0.0214) (0.1054)
Labour, B, 0.2969 0.6830 0.1975
(0.0515) (0.0165) (0.0136)

Notes: Alternative specification allowing the slope of the production frontier to depend
on labour and capital inputs. Standard errors in parenthesis.

Table [8 presents the results for this specification of our model, as well as the OLS and FE
approaches. Although the OLS and FE approaches are statistically insignificant for the most part,
our model indicates that the slope of the production frontier is strongly related to the capital—
labour ratio. In particular, adding stations makes the quantity-quality tradeoff steeper, while
adding labour flattens it; i.e. the differential impact of adding stations expands the production
frontier towards quantity compared to hiring more employees. This result corresponds well with
our description of the industry: an additional station can be used to expand output with the same
number of nurses and technicians, though the risk of infection increases as fewer nurses are
available to monitor and clean machines.

Interestingly, the coefficients on oy and age sum to almost zero, which suggests that the
quality-quantity tradeoff is not sensitive to scale[ Instead, it appears that the capital-labour
ratio is the key factor determining the tradeoff.

Overall, the average slope of the production frontier is —0.0115, which is similar to that found
in the baseline model of Table B though slightly smaller in magnitude. The estimates imply an
average elasticity of quantity with respect to quality of —0.148. The coefficient is not statistically
significant, however, due to the much larger standard errors. The lack of precision is at least
partially due to the high correlation between capital and labour, which is further exacerbated
when both are interacted with our quality measures. Furthermore, about 20% of centres—those
with the lowest capital-to-labour ratios—are estimated to have a production frontier with a positive
slope, which violates the model. This could be due to specification error or attenuation bias from
using proxies to control for quality choices. Therefore, although the results of this specification
are instructive, we take our baseline estimates as our primary estimate of the quality-quantity
tradeoff within the industry.

7. CONCLUSION

Because dialysis treatments comprise a large—and growing—expense for Medicare, controlling
their costs will likely concern policy makers for the foreseeable future. By estimating centre-
level production functions that incorporate endogenous quality choices, we quantify the tradeoff
that dialysis centres face between treating more patients and providing higher quality care.

55. Formally, the model does not reject the hypothesis that a,,; +0ay¢ =0; the p-value for the test is 0.67.
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Understanding this relationship is crucial for designing effective policies that promote the proper
balance of efficiency and efficacy.

A back-of-the-envelope calculation demonstrates how our analysis can inform policy
decisions. In the first of two approaches, we benchmark the cost of reducing infections by
calculating the number of patients a centre would have to forgo in order to prevent one (expected)
infection. Under this scenario, the median number of patient-years a centre must give up to
eliminate one expected infection per year is 1.5. As industry studies suggest that the cost of
haemodialysis treatment is between $45,000 and 55,000 per patient annually (m, M),
this suggests the opportunity cost of preventing one infection per year is roughly $75,000.
Alternatively, we could consider the possibility that centres treat the same number of patients
but reduce infections by hiring more staff. From this perspective, our results indicate that the
median increase in staff required to eliminate one expected infection would be 1.8 full-time
equivalent employees. Although compensation varies based on staff qualifications and location,
if we assume compensation ranges from $35,000 to 50,000, this would suggest preventing one
infection costs $63,000-90,000P9 Under either approach, the opportunity cost of one infection
to a centre is approximately $75,000.

With this estimate in hand, we can compare the opportunity cost of preventing infections for a
dialysis centre to the cost of treating septic infections in a hospital. Although hospitalization
costs vary widely depending on the severity of the infection, a recent study estimates that
the hospitalization of a haemodialysis patient for an infection costs, on average, $25,000
(Ramanathan er al], 2007). Therefore, tighter quality regulation will improve social welfare if
society’s non-hospitalization cost of infection (i.e. the increased risk of death and disutility of
the infected patient) is greater than $50,000, but will reduce welfare if it is less than this amount.
Although admittedly speculative, this analysis serves as a guidepost for policy makers seeking to
regulate dialysis providers along this dimension.

To provide context for this $50,000 figure, we consider the cost of an infection in terms of
life-years lostF1 According to the facility reports which are the source for our data, the death rate
at dialysis facilities was 21.0%, while 17.5% of these deaths were due to infection. This implies
the rate of deaths due to infection was roughly 3.7% against an overall septic infection rate of
12.3% P9 If we assume that all infection-related deaths involve hospitalization, this implies that
an infection corresponds to a 29.6% chance of death. Given the overall life expectancy of ESRD
patients is 6.2 years (Im, M), this implies that an infection costs roughly 1.8 expected life
years. Willingness to pay for a “quality adjusted life-year” (QALY) is commonly cited as $50,000,
although studies attempting to estimate the value of a QALY produce a wide range of results [
This benchmark would imply that the cost of infection in life-year terms is $92,000, which
suggests that welfare could be increased by increasing quality incentives in dialysis centres [

s6. BLY M) reports that the median salary of all licensed practical and vocational nurses is $41,000. Our labour
measure includes nurses and technicians so this salary estimate is likely an upper bound. On the other hand, this salary
estimate does not account for non-salary compensation.

57. We consider life-years lost instead of the value of a statistical life because ESRD patients have much shorter
life expectancy than the general population. For an ESRD patient age 60-65 years (the average age in our data set is
61.5), life expectancy was 5.1 years, while life expectancy for the U.S. population is 23.1 years ,m).

58. Our data compiles reports for years 2004—8 and we calculate an infection rate of 12.5% based on centre averages
(Table 1).

59. [Hirth ez all M) surveys several studies which can be used to provide QALY estimates. These estimates range
from $24,000 to $428,000. The authors conclude that the $50,000 rule of thumb likely understates the societal value of
a QALY. We use the benchmark for consistency with the literature while recognizing it may be conservative.

60. Clearly, there is substantial uncertainty about this calculation in both directions. For example, one may believe
that quality of life for dialysis patients is lower than the QALY benchmark, reducing the cost of an infection. Alternatively,
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The introduction of the Quality Incentive Program introduced by Medicare in 2012, which reduces
payments to dialysis centres that fail to meet outcome metrics, is an example of such a policy.

More broadly, our work informs policy discussions by showing that, while productivity
dispersion is extensive within the industry, cost-cutting initiatives may result in centres reducing
the quality of care they provide. Because dialysis resembles other healthcare settings, these
findings illustrate the challenges of introducing policies intended to minimize costs while
maintaining high standards of care.

APPENDIX
A. PROOFS

Proof of Lemma[l The centre’s expected period-return to labour is increasing in o4, i.e. ‘;—’Z is increasing in w4.

Proof. Because centre payoffs are increasing in both y and ¢ (i.e. the centre has non-satiable payoffs), we know that the
centre will choose (3, g) to solve the following problem where the production constraint binds:

w(k,€,x,0)=max E[o(y.q.k,£,x)]
y.q

subject to: T(y,§) =F (k,£,w?)
y=y+eé’
q=q+¢7.
Differentiating = with respect to £, the return to an increase in labour is,

dm
de

dy dg
:E[pyﬁ +Pqﬁ +Pl] »
where py represents the partial derivative of p with respect to x and the total derivatives with respect to ¥ and g are the
centre’s optimal policy change for a change in £. We know both are weakly positive—with at least one strictly positive—
because an increase in £ relaxes the production constraint through an increase in F(-), and p(-) is increasing in both y and
q. To see that this is increasing in w?, note that an increase in w? also relaxes the production constraint. Differentiating
again with respect to w? yields

din__ [, d5dy  ddi
dedwd Ydedwt  T1dl dot |

Non-satiation again ensures that both terms are weakly positive and at least one is strictly positive. ||

Proof of Proposition[d] For any fixed investment level k, the centre hiring function h(k,£,x,o") is invertible with respect
to " on the domain {(k,€,x,0"):i(k,€,x,0")=1},

o"=n71(k, €, x,h).

Proof. We will apply Theorem 1 from‘m @) while accounting for three differences which complicate our model.
First, following Lemma 1 fromm d@) we note the the inclusion of a discrete choice of capital investment does not
alter our ability to use the centre’s first-order condition with respect to hiring; we must simply substitute the (observed)
optimal investment choice ¢ into the first-order condition such that

en(t, )+ BEVyk+1,6+h.x  o? )k, €,0" 1, h]=0.

Second, because x evolves according to an exogenous stochastic process, we can use the insight found in Appendix
C ofm M) that additional exogenous variables do not alter the invertibility property. The only remaining
difference between this problem and the traditional investment problem described by ) is that our
productivity process evolves intra-period between the quality and investment stages. However, because Pr(w? |") and
Pr(w"|w?) are both stochastically increasing in »" and w? (the former by assumption, and the latter because it is a random

low-quality care results in more adverse outcomes than simply deaths from infections, implying the full benefits of
increasing quality exceed this figure.
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walk), we know that Pr(o" |w™) is also stochastically increasing. We can thus write a single Bellman equation for a centre
at the time of the hiring decision as

V(k,zz,x,oﬂ,s,wh)zm%x—c(i,h,k,e)m(k,z,x,aﬂ)+g+ﬂE[V(k’,z’,x’,aﬂ’,g,w"’)|k,z,x,w",i,h].
1,

Note here that today’s realized profits from the quality stage are  (k,€,x,w?)+&, where £ is uncorrelated with the agent’s
information set at the time of the quality choice (or any time before the quality choice), but is known at the time of the
hiring decision since production outcomes are already revealed; i.e. they are sunk with respect to today’s hiring decision.
Note also that w? and & represent two additional state variables, but they both evolve exogenously. Moreover, conditional
on o, they are uncorrelated with future draws of w7 and &, which is why they do not appear in the final expectation term.

Finally, using Lemma[[land the fact that Pr(a)‘/ |w™) is stochastically increasing, we know E[w |k, €,x,0"] is
increasing in w/.

Followingm (M), group k* =(k, £, x,w?, ), meaning that the policy function can be written as A(k*, o' ).
We can now directly applym (@, Lemma 3) where c(h,t,k*) stands for c(x,k) ; w(w?,k*)=m(k,l,x,09)+&

for m(w,k); and the choice variable is & (hiring), rather than x, which was continuous capital investment in

[Paked (1999). |
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